Friday, January 11, 2008

PETROL ENGINE

The two-stroke cycle of an internal combustion engine differs from the more common four-stroke cycle by completing the same four processes (intake, compression, power, exhaust) in only two strokes of the piston rather than four. This is accomplished by using the space below the piston for air intake and compression, thus allowing the chamber above the piston to be used for just the power and exhaust strokes. This causes there to be a power stroke for every revolution of the crank, instead of every second revolution as in a four-stroke engine. For this reason, two-stroke engines provide high specific power, so they are valued for use in portable, lightweight applications. On the other hand large two stroke diesels have been in use in industry (i.e. locomotive engines) since the early twentieth century.
The two-stroke spark-ignition engine's invention is generally credited to Joseph Day (and Frederick Cock for the transfer-port), whereas the two-stroke valved compression-ignition engine is attributed to Dugald Clark.The smallest gasoline engines are usually two-strokes. They are popular due to their simple design (and therefore, low cost) and very high power-to-weight ratios. The biggest disadvantage is that the engine lubricant is almost always mixed in with the fuel, thus significantly increasing the emission of pollutants. For this reason, two-stroke engines are being replaced with four-stroke engines in as many applications as possible.
Two-stroke engines are still commonly used in high-power, handheld applications where light weight is essential, primarily string trimmers and chainsaws. To a lesser extent, these engines may still be used for certain small, portable, or specialized machine applications. These include outboard motors, high-performance, small-capacity motorcycles, mopeds, underbones, scooters, snowmobiles, karts, model airplanes (and other model vehicles) and lawnmowers. In the past, two-stroke cycles were experimented with for use in diesel engines, most notably with opposed piston designs, low-speed units such as large marine engines, and V8 engines for trucks and heavy machinery.
Two-stroke diesel enginesUnlike a gasoline engine, which requires a spark plug to ignite the fuel/air charge in the cylinder, a diesel engine relies solely on the heat of compression for ignition. Fuel is injected at high pressure into the superheated compressed air and instantly ignites. Therefore, scavenging is performed with air alone.
In order to allow the usage of a conventional oil-filled crankcase and pressure lubricated main and connecting rod bearings, a two-stroke diesel is scavenged by a mechanically driven blower (often a Roots positive displacement blower) or a hybrid turbo-supercharger, rather than by crankcase pumping. Generally speaking, the blower capacity is carefully matched to the engine displacement so that a slight positive pressure is present in each cylinder during the scavenging phase (that is, before the exhaust valves are closed). This feature assures full expulsion of exhaust gases from the previous power stroke, and also prevents exhaust gases from backfeeding into the blower and possibly causing damage due to contamination by particulates.
It should be noted that the scavenging blower is not a supercharger, as its purpose is to supply airflow to the cylinders in proportion to their displacement and engine speed. A two-stroke diesel supplied with air from a blower alone is considered to be naturally aspirated. In some cases, turbocharging may be added to increase mass air flow at full throttle—with a corresponding increase in power output—by directing the output of the turbocharger into the intake of the scavenging blower, an arrangement that was found on some Detroit Diesel two-stroke engines.
A conventional, exhaust-driven turbocharger cannot be used by itself to produce scavenging airflow, as it is incapable of operating unless the engine is already running. Hence it would be impossible to start the engine. The common solution to this problem is to drive the turbocharger's impeller through a gear train and overrunning clutch. In this arrangement, the impeller turns at sufficient speed during engine cranking to produce the required airflow, thus acting as a mechanical blower. At lower engine speeds, the turbocharger will continue to act as a mechanical blower. However, at higher power settings the exhaust gas pressure and volume will increase to a point where the turbine side of the turbocharger will drive the impeller and the overrunning clutch will disengage, resulting in true turbocharging.

REFLECTOR

Concentrating or non-concentrating
A large parabolic reflector solar furnace is located in the Pyrenees at Odeillo, French Cerdagne. It is used for various research purposes. Concentrating solar power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam capable of producing high temperatures and correspondingly high thermodynamic efficiencies. Concentrating solar is generally associated with solar thermal applications but concentrating photovoltaic (CPV) applications exist as well and these technologies also exhibit improved efficiencies. CSP systems require direct insolation to operate properly. Concentrating solar power systems vary in the way they track the sun and focus light.• Line focus/Single-axis o A solar trough consists of a linear parabolic reflector which concentrates light on a receiver positioned along the reflector's focal line. These systems use single-axis tracking to follow the sun. A working fluid (oil, water) flows through the receiver and is heated up to 400 °C before transferring its heat to a distillation or power generation system. Trough systems are the most developed CSP technology. The Solar Electric Generating System (SEGS) plants in California and Plataforma Solar de Almería's SSPS-DCS plant in Spain are representatives of this technology. • Point focus/Dual-axis o A power tower consists of an array of flat reflectors (heliostats) which concentrate light on a central receiver located on a tower. These systems use dual-axis tracking to follow the sun. A working fluid (air, water, molten salt) flows through the receiver where it is heated up to 1000 °C before transferring its heat to a power generation or energy storage system. Power towers are less advanced than trough systems but they offer higher efficiency and energy storage capability. The Solar Two in Daggett, California and the Planta Solar 10 (PS10) in Sanlucar la Mayor, Spain are representatives of this technology.o A parabolic dish or dish/engine system consists of a stand-alone parabolic reflector which concentrates light on a receiver positioned at the reflector's focal point. These systems use dual-axis tracking to follow the sun. A working fluid (hydrogen, helium, air, water) flows through the receiver where it is heated up to 1500 °C before transferring its heat to a sterling engine for power generation. Parabolic dish systems display the highest solar-to-electric efficiency among CSP technologies and their modular nature offers scalability. The Stirling Energy Systems (SES) and Science Applications International Corporation (SAIC) dishes at UNLV and the Big Dish in Canberra, Australia are representatives of this technology.Non-concentrating photovoltaic and solar thermal systems do not concentrate sunlight. While the maximum attainable temperatures (200 °C) and thermodynamic efficiencies are lower, these systems offer simplicity of design and have the ability to effectively utilize diffuse insolation. Flat-plate thermal and photovoltaic panels are representatives of this technology.

Friday, November 30, 2007

Hydrogen Engine

Some have theorized that in the future hydrogen might replace such fuels. Furthermore, with the introduction of hydrogen fuel cell technology, the use of internal combustion engines may be phased out. The advantage of hydrogen is that its combustion produces only water. This is unlike the combustion of fossil fuels, which produce carbon dioxide, a known green house gas GHG, carbon monoxide resulting from incomplete combustion, and other local and atmospheric pollutants such as sulfur dioxide and nitrogen oxides that lead to urban respiratory problems, acid rain, and ozone gas problems. However, free hydrogen for fuel does not occur naturally, burning it liberates less energy than it takes to produce hydrogen in the first place due to the second law of thermodynamics.
Although there are multiple ways of producing free hydrogen, those require converting combustible molecules into hydrogen, so hydrogen does not solve any energy crisis, moreover, it only addresses the issue of portability and some pollution issues. The disadvantage of hydrogen in many situations is its storage. Liquid hydrogen has extremely low density- 14 times lower than water and requires extensive insulation, whilst gaseous hydrogen requires heavy tankage. Although hydrogen has a higher specific energy, the volumetric energetic storage is still roughly five times lower than petrol, even when liquified. (The 'Hydrogen on Demand' process, designed by Steven Amendola, creates hydrogen as it is needed, but has other issues, such as the high price of the sodium borohydride, the raw material. Sodium borohydride is renewable and could become cheaper if more widely produced.)

Engine-Efficiency

The efficiency of various types of internal combustion engines vary. Most gasoline fueled internal combustion engines, even when aided with turbochargers and stock efficiency aids, have a mechanical efficiency of about 20% . The efficiency may be as high as 37% at the optimum operating point in engines where this is a high priority such as that of the Prius. Most internal combustion engines waste about 36% of the energy in gasoline as heat lost to the cooling system and another 38% through the exhaust. The rest, about 6%, is lost to friction. But this technology is one of the leading factors to global warming and pollution.
Hydrogen Fuel Injection, or HFI, is an engine add on system that improves the fuel economy of internal combustion engines by injecting hydrogen as a combustion enhancement into the intake manifold. Fuel economy gains of 15% to 50% can be seen[citation needed]. A small amount of hydrogen added to the intake air-fuel charge increases the octane rating of the combined fuel charge and enhances the flame velocity, thus permitting the engine to operate with more advanced ignition timing, a higher compression ratio, and a leaner air-to-fuel mixture than otherwise possible. The result is lower pollution with more power and increased efficiency. Some HFI systems use an on board electrolyzer to generate the hydrogen used but this appears to have little credibility at this time given the small amounts of gas produced from them. A small tank of pressurized hydrogen can also be used, but this method necessitates refilling and Hydrogen in liquid form is difficult to store in any usable volume.
There has also been discussion of new types of internal combustion engines, such as the Scuderi Split Cycle Engine, that utilize high compression pressures in excess of 2000 psi and combust after top-dead-center (the highest & most compressed point in an internal combustion piston stroke). The claimed efficiency of this engine, by calculation, is 42%. This has yet to be demonstrated as of March 2007.

engine

The internal combustion engine is an engine in which the combustion, or rapid oxidation, of gas and air occurs in a confined space called a combustion chamber. This exothermic reaction of a fuel with an oxidizer creates gases of high temperature and pressure, which are permitted to expand. The defining feature of an internal combustion engine is that useful work is performed by the expanding hot gases acting directly to cause pressure, further causing movement of the piston inside the cylinder. For example by acting on pistons, rotors, or even by pressing on and moving the entire engine itself.
This contrasts with external combustion engines, such as steam engines and Stirling engines, which use an external combustion chamber to heat a separate working fluid, which then in turn does work, for example by moving a piston.
The term Internal Combustion Engine (ICE) is almost always used to refer specifically to reciprocating engines, Wankel engines and similar designs in which combustion is intermittent. However, continuous combustion engines, such as jet engines, most rockets and many gas turbines are also internal combustion engines.

Sunday, October 28, 2007

INTRODUCTION

Integrated circuits were made possible by experimental discoveries which showed that semiconductor devices could perform the functions of vacuum tubes, and by mid-20th-century technology advancements in semiconductor device fabrication. The integration of large numbers of tiny transistors into a small chip was an enormous improvement over the manual assembly of circuits using discrete electronic components. The integrated circuit's mass production capability, reliability, and building-block approach to circuit design ensured the rapid adoption of standardized ICs in place of designs using discrete transistors.

There are two main advantages of ICs over discrete circuits: cost and performance. Cost is low because the chips, with all their components, are printed as a unit by photolithography and not constructed a transistor at a time. Performance is high since the components switch quickly and consume little power, because the components are small and close together. As of 2006, chip areas range from a few square mm to around 350 mm2, with up to 1 million transistors per mm2.

INTEGERATED CIRCUIT

A monolithic integrated circuit (also known as IC, microcircuit, microchip, silicon chip, or chip) is a miniaturized electronic circuit (consisting mainly of semiconductor devices, as well as passive components) that has been manufactured in the surface of a thin substrate of semiconductor material.
A hybrid integrated circuit is a miniaturized electronic circuit constructed of individual semiconductor devices, as well as passive components, bonded to a substrate or circuit board
An electronic circuit is an electrical circuit that also contains active electronic devices such as transistors or vacuum tubes.
Electronic circuits can display highly complex behaviors, even though they are governed by the same laws as simple electrical circuits.
Electronic circuits can usually be categorized as analog, digital, or mixed-signal (a combination of analog and digital) electronic circuitsSemiconductor devices are electronic components that exploit the electronic properties of semiconductor materials, principally silicon, germanium, and gallium arsenide. Semiconductor devices have replaced thermionic devices (vacuum tubes) in most applications. They use electronic conduction in the solid state as opposed to the gaseous state or thermionic emission in a high vacuum.
Semiconductor devices are manufactured both as single discrete devices and as integrated circuits (ICs), which consist of a number—from a few to millions—of devices manufactured and interconnected on a single semiconductor substrateThe main reason semiconductor materials are so useful is that the behaviour of a semiconductor can be easily manipulated by the addition of impurities, known as doping. Semiconductor conductivity can be controlled by introduction of an electric field, by exposure to light, and even pressure and heat; thus, semiconductors can make excellent sensors. Current conduction in a semiconductor occurs via mobile or "free" electrons and holes (collectively known as charge carriers).