Sunday, October 28, 2007

INTRODUCTION

Integrated circuits were made possible by experimental discoveries which showed that semiconductor devices could perform the functions of vacuum tubes, and by mid-20th-century technology advancements in semiconductor device fabrication. The integration of large numbers of tiny transistors into a small chip was an enormous improvement over the manual assembly of circuits using discrete electronic components. The integrated circuit's mass production capability, reliability, and building-block approach to circuit design ensured the rapid adoption of standardized ICs in place of designs using discrete transistors.

There are two main advantages of ICs over discrete circuits: cost and performance. Cost is low because the chips, with all their components, are printed as a unit by photolithography and not constructed a transistor at a time. Performance is high since the components switch quickly and consume little power, because the components are small and close together. As of 2006, chip areas range from a few square mm to around 350 mm2, with up to 1 million transistors per mm2.

INTEGERATED CIRCUIT

A monolithic integrated circuit (also known as IC, microcircuit, microchip, silicon chip, or chip) is a miniaturized electronic circuit (consisting mainly of semiconductor devices, as well as passive components) that has been manufactured in the surface of a thin substrate of semiconductor material.
A hybrid integrated circuit is a miniaturized electronic circuit constructed of individual semiconductor devices, as well as passive components, bonded to a substrate or circuit board
An electronic circuit is an electrical circuit that also contains active electronic devices such as transistors or vacuum tubes.
Electronic circuits can display highly complex behaviors, even though they are governed by the same laws as simple electrical circuits.
Electronic circuits can usually be categorized as analog, digital, or mixed-signal (a combination of analog and digital) electronic circuitsSemiconductor devices are electronic components that exploit the electronic properties of semiconductor materials, principally silicon, germanium, and gallium arsenide. Semiconductor devices have replaced thermionic devices (vacuum tubes) in most applications. They use electronic conduction in the solid state as opposed to the gaseous state or thermionic emission in a high vacuum.
Semiconductor devices are manufactured both as single discrete devices and as integrated circuits (ICs), which consist of a number—from a few to millions—of devices manufactured and interconnected on a single semiconductor substrateThe main reason semiconductor materials are so useful is that the behaviour of a semiconductor can be easily manipulated by the addition of impurities, known as doping. Semiconductor conductivity can be controlled by introduction of an electric field, by exposure to light, and even pressure and heat; thus, semiconductors can make excellent sensors. Current conduction in a semiconductor occurs via mobile or "free" electrons and holes (collectively known as charge carriers).

Tuesday, October 23, 2007

FUEL

Fuels used include petroleum spirit (North American term: gasoline, British term: petrol), autogas (liquified petroleum gas), compressed natural gas, hydrogen, diesel fuel, jet fuel, landfill gas, biodiesel, biobutanol, peanut oil and other vegoils, bioethanol, biomethanol (methyl or wood alcohol) and other biofuels. Even fluidised metal powders and explosives have seen some use. Engines that use gases for fuel are called gas engines and those that use liquid hydrocarbons are called oil engines. However, gasoline engines are also often colloquially referred to as 'gas engines'.
The main limitations on fuels are that it must be easily transportable through the fuel system to the combustion chamber, and that the fuel release sufficient energy in the form of heat upon combustion to make use of the engine practical.
The oxidiser is typically air, and has the advantage of not being stored within the vehicle, increasing the power-to-weight ratio. Air can, however, be compressed and carried aboard a vehicle. Some submarines are designed to carry pure oxygen or hydrogen peroxide so that they do not need air from the atmosphere. Some race cars carry nitrous oxide as oxidizer. Other chemicals such as chlorine or fluorine have been used experimentally, but have not been found to be practical.
Diesel engines are generally heavier, noisier and more powerful at lower speeds than gasoline engines. They are also more fuel-efficient in most circumstances and are used in heavy road vehicles, some automobiles (increasingly so for their increased fuel efficiency over gasoline engines), ships, railway locomotives, and light aircraft. Gasoline engines are used in most other road vehicles including most cars, motorcycles and mopeds. Note that in Europe, sophisticated diesel-engined cars have taken over about 40% of the market since the 1990s. There are also engines that run on hydrogen, methanol, ethanol, liquefied petroleum gas (LPG) and biodiesel. Paraffin and tractor vaporising oil (TVO) engines are no longer seen.

HYDROGEN ENGINE

Some have theorized that in the future hydrogen might replace such fuels. Furthermore, with the introduction of hydrogen fuel cell technology, the use of internal combustion engines may be phased out. The advantage of hydrogen is that its combustion produces only water. This is unlike the combustion of fossil fuels, which produce carbon dioxide, a known green house gas GHG, carbon monoxide resulting from incomplete combustion, and other local and atmospheric pollutants such as sulfur dioxide and nitrogen oxides that lead to urban respiratory problems, acid rain, and ozone gas problems. However, free hydrogen for fuel does not occur naturally, burning it liberates less energy than it takes to produce hydrogen in the first place due to the second law of thermodynamics.
Although there are multiple ways of producing free hydrogen, those require converting combustible molecules into hydrogen, so hydrogen does not solve any energy crisis, moreover, it only addresses the issue of portability and some pollution issues. The disadvantage of hydrogen in many situations is its storage. Liquid hydrogen has extremely low density- 14 times lower than water and requires extensive insulation, whilst gaseous hydrogen requires heavy tankage. Although hydrogen has a higher specific energy, the volumetric energetic storage is still roughly five times lower than petrol, even when liquified. (The 'Hydrogen on Demand' process, designed by Steven Amendola, creates hydrogen as it is needed, but has other issues, such as the high price of the sodium borohydride, the raw material. Sodium borohydride is renewable and could become cheaper if more widely produced.)

Thursday, October 18, 2007

A turbojet engine is a type of internal combustion engine often used to propel aircraft. Air is drawn into the rotating compressor via the intake and is compressed, through successive stages, to a higher pressure before entering the combustion chamber. Fuel is mixed with the compressed air and ignited by flame in the eddy of a flame holder. This combustion process significantly raises the temperature of the gas. Hot combustion products leaving the combustor expand through the turbine, where power is extracted to drive the compressor. Although this expansion process reduces both the gas temperature and pressure at exit from the turbine, both parameters are usually still well above ambient conditions. The gas stream exiting the turbine expands to ambient pressure via the propelling nozzle, producing a high velocity jet in the exhaust plume. If the jet velocity exceeds the aircraft flight velocity, there is a net forward thrust upon the airframe
Under normal circumstances, the pumping action of the compressor prevents any backflow, thus facilitating the continuous-flow process of the engine. Indeed, the entire process is similar to a four-stroke cycle, but with induction, compression, ignition, expansion and exhaust taking place simultaneously, but in different sections of the engine. The efficiency of a jet engine is strongly dependent upon the overall pressure ratio (combustor entry pressure/intake delivery pressure) and the turbine inlet temperature of the cycle.
It is also perhaps instructive to compare turbojet engines with propeller engines. Turbojet engines take a relatively small mass of air and accelerate it by a large amount, whereas a propeller takes a large mass of air and accelerates it by a small amount. The high-speed exhaust of a turbojet engine makes it efficient at high speeds (especially supersonic speeds) and high altitudes. On slower aircraft and those required to fly short stages, a gas turbine-powered propeller engine, commonly known as a turboprop, is more common and much more efficient. Very small aircraft generally use conventional piston engines to drive a propeller but small turboprops are getting smaller as engineering technology improves.


The turbojet described above is a single-spool design, in which a single shaft connects the turbine to the compressor. Higher overall pressure ratio designs often have two concentric shafts, to improve compressor stability during engine throttle movements. The outer high pressure (HP) shaft connects the HP compressor to the HP turbine. This HP Spool, with the combustor, forms the core or gas generator of the engine. The inner shaft connects the low pressure (LP) compressor to the LP Turbine to create the LP Spool. Both spools are free to operate at their optimum shaft speed. (Concorde used this type).

HISTROY

Jet engines can be dated back to the first century AD, when Hero of Alexandria invented the aeolipile. This used steam power directed through two jet nozzles so as to cause a sphere to spin rapidly on its axis. So far as is known, it was little used for supplying mechanical power, and the potential practical applications of Hero's invention of the jet engine were not recognized. It was simply considered a curiosity.
Jet propulsion only literally and figuratively took off with the invention of the rocket by the Chinese in the 11th century. Rocket exhaust was initially used in a modest way for fireworks but gradually progressed to propel formidable weaponry; and there the technology stalled for hundreds of years.
The problem was that rockets are simply too inefficient to be useful for general aviation. Instead, by the 1930s, the piston engine in its many different forms (rotary and static radial, aircooled and liquid-cooled inline) was the only type of powerplant available to aircraft designers. This was acceptable as long as only low performance aircraft were required, and indeed all that were available.
However, engineers were beginning to realize conceptually that the piston engine was self-limiting in terms of the maximum performance which could be attained; the limit was essentially one of propeller efficiency. This seemed to peak as blade tips approached the speed of sound. If engine, and thus aircraft, performance were ever to increase beyond such a barrier, a way would have to be found to radically improve the design of the piston engine, or a wholly new type of powerplant would have to be developed. This was the motivation behind the development of the gas turbine engine, commonly called a "jet" engine, which would become almost as revolutionary to aviation as the Wright brothers' first flight.
The earliest attempts at jet engines were hybrid designs in which an external power source supplied the compression. In this system (called a thermojet by Secondo Campini) the air is first compressed by a fan driven by a conventional piston engine, then it is mixed with fuel and burned for jet thrust. The examples of this type of design were the Henri Coandă's Coandă-1910 aircraft, and the much later Campini Caproni CC.2, and the Japanese Tsu-11 engine intended to power Ohka kamikaze planes towards the end of World War II. None were entirely successful and the CC.2 ended up being slower than the same design with a traditional engine and propeller combination.The key to a practical jet engine was the gas turbine, used to extract energy from the engine itself to drive the compressor. The gas turbine was not an idea developed in the 1930s: the patent for a stationary turbine was granted to John Barber in England in 1791. The first gas turbine to successfully run self-sustaining was built in 1903 by Norwegian engineer Ægidius Elling. The first patents for jet propulsion were issued in 1917. Limitations in design and practical engineering and metallurgy prevented such engines reaching manufacture. The main problems were safety, reliability, weight and, especially, sustained operation.
In 1929, Aircraft apprentice Frank Whittle formally submitted his ideas for a turbo-jet to his superiors. On 16 January 1930 in England, Whittle submitted his first patent (granted in 1932). The patent showed a two-stage axial compressor feeding a single-sided centrifugal compressor. Whittle would later concentrate on the simpler centrifugal compressor only, for a variety of practical reasons.


In 1935 Hans von Ohain started work on a similar design in Germany, seemingly unaware of Whittle's work.
Whittle had his first engine running in April 1937. It was liquid-fuelled, and included a self-contained fuel pump. Von Ohain's engine, as well as being 5 months behind Whittle's, relied on gas supplied under external pressure, so was not self-contained. Whittle's team experienced near-panic when the engine would not stop, even after the fuel was switched off. It turned out that fuel had leaked into the engine and accumulated in pools. So the engine would not stop until all the leaked fuel had burned off. Whittle unfortunately failed to secure proper backing for his project, and so fell behind Von Ohain in the race to get a jet engine into the air.
Ohain approached Ernst Heinkel, one of the larger aircraft industrialists of the day, who immediately saw the promise of the design. Heinkel had recently purchased the Hirth engine company, and Ohain and his master machinist Max Hahn were set up there as a new division of the Hirth company. They had their first HeS 1 engine running by September 1937. Unlike Whittle's design, Ohain used hydrogen as fuel, supplied under external pressure. Their subsequent designs culminated in the gasoline-fuelled HeS 3 of 1,100 lbf (5 kN), which was fitted to Heinkel's simple and compact He 178 airframe and flown by Erich Warsitz in the early morning of August 27, 1939, from Marienehe aerodrome, an impressively short time for development. The He 178 was the world's first jet plane.
Meanwhile, Whittle's engine was starting to look useful, and his Power Jets Ltd. started receiving Air Ministry money. In 1941 a flyable version of the engine called the W.1, capable of 1000 lbf (4 kN) of thrust, was fitted to the Gloster E28/39 airframe specially built for it, and first flew on May 15, 1941 at RAF Cranwell.

ENGINE

A jet engine is an engine that discharges a fast moving jet of fluid to generate thrust in accordance with Newton's third law of motion. This broad definition of jet engines includes turbojets, turbofans, rockets, ramjets, pulse jets and pump-jets, but in common usage, the term generally refers to a gas turbine Brayton cycle engine used to produce a jet of high speed exhaust gases specifically for propulsive purposes. Jet engines are so familiar to the modern world that gas turbines are sometimes mistakenly referred to as a particular application of a jet engine, rather than the other way around
A rocket is a vehicle, missile or aircraft which obtains thrust by the reaction to the ejection of fast moving fluid from within a rocket engine


The history of rockets goes back to the 13th century. By the 20th century it included human spaceflight to the Moon, and in the 21st century rockets have enabled commercial space tourism.
Rockets are used for fireworks and weaponry, as launch vehicles for artificial satellites, and for human spaceflight and exploration of other planets. While they are inefficient for low speed use, they are, compared to other propulsion systems, very lightweight, powerful and can achieve extremely high speeds particularly when staging is employed.
Chemical rockets operate by expanding hot exhaust gas against the inside of a bell nozzle, this generates forces that both accelerate the gas to extremely high speed, as well as, since every action has an equal and opposite reaction, generating a large thrust on the rocket.
Chemical rockets contain a large amount of energy in an easily liberated form, and can be very dangerous, although careful design, testing, construction and use can minimise the risks.

Turbojets are the simplest and oldest kind of general purpose jet engines. Two different engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently during the late 1930s.
On 27 August 1939 the Heinkel He 178 became the world's first aircraft to fly under turbojet power, thus becoming the first practical jet plane. The first operational turbojet aircraft, the Messerschmitt Me 262 and the Gloster Meteor entered service towards the end of World War II in 1944.
A turbojet engine is used primarily to propel aircraft. Air is drawn into the rotating compressor via the intake and is compressed to a higher pressure before entering the combustion chamber. Fuel is mixed with the compressed air and ignited by flame in the eddy of a flame holder. This combustion process significantly raises the temperature of the gas. Hot combustion products leaving the combustor expand through the turbine, where power is extracted to drive the compressor. Although this expansion process reduces the turbine exit gas temperature and pressure, both parameters are usually still well above ambient conditions. The gas stream exiting the turbine expands to ambient pressure via the propelling nozzle, producing a high velocity jet in the exhaust plume. If the momentum of the exhaust stream exceeds the momentum of the intake stream, the impulse is positive, thus, there is a net forward thrust upon the airframe.
Early generation jet engines were pure turbojets with either an axial or centrifugal compressor. Modern jet engines are mainly turbofans, where a proportion of the air entering the intake bypasses the combustor; this proportion depends on the engine's bypass ratio.
Although ramjet engines are simpler in design, as they have virtually no moving parts, they are incapable of operating at low flight speeds.